
Tutorial: Introduction to R and RStudio
Resource: http://swcarpentry.github.io/r-novice-gapminder/01-rstudio-intro/

Motivation

Science is a multi-step process: once you’ve designed an experiment and collected data, the real fun
begins! This lesson will teach you how to start this process using R and RStudio. We will begin with
raw data, perform exploratory analyses, and learn how to plot results graphically. This example starts
with a dataset from gapminder.org containing population information for many countries through time.
Can you read the data into R? Can you plot the population for Senegal? Can you calculate the average
income for countries on continent of Asia? By the end of these lessons you will be able to do things
like plot the populations for all of these countries in under a minute!

Introduction to RStudio

Welcome to the R portion of the Software Carpentry workshop.

Throughout this lesson, we’re going to teach you some of the fundamentals of the R language as well
as some best practices for organizing code for scientific projects that will make your life easier.

We’ll be using RStudio: a free, open source R integrated development environment. It provides a
built in editor, works on all platforms (including on servers) and provides many advantages such as
integration with version control and project management.

Basic layout

When you first open RStudio, you will be greeted by three panels:

• The interactive R console (entire left)
• Environment/History (tabbed in upper right)
• Files/Plots/Packages/Help/Viewer (tabbed in lower right)

Once you open files, such as R scripts, an editor panel will also open in the top left.

Work flow within RStudio

There are two main ways one can work within RStudio.

1. Test and play within the interactive R console then copy code into a .R file to run later.

• This works well when doing small tests and initially starting off.
• It quickly becomes laborious

2. Start writing in an .R file and use RStudio’s command / short cut to push current line, selected
lines or modified lines to the interactive R console.

• This is a great way to start; all your code is saved for later
• You will be able to run the file you create from within RStudio or using R’s source() function.

1

https://www.gapminder.org

Tip: Running segments of your code

RStudio offers you great flexibility in running code from within the editor window. There
are buttons, menu choices, and keyboard shortcuts. To run the current line, you can 1. click
on the Run button above the editor panel, or 2. select “Run Lines” from the “Code” menu,
or 3. hit Ctrl-Enter in Windows or Linux or Command-Enter on OS X. (This shortcut can
also be seen by hovering the mouse over the button). To run a block of code, select it and
then Run. If you have modified a line of code within a block of code you have just run,
there is no need to reselct the section and Run, you can use the next button along, Re-run
the previous region. This will run the previous code block including the modifications
you have made.

Introduction to R

Much of your time in R will be spent in the R interactive console. This is where you will run all of
your code, and can be a useful environment to try out ideas before adding them to an R script file.
This console in RStudio is the same as the one you would get if you typed in R in your command-line
environment.
The first thing you will see in the R interactive session is a bunch of information, followed by a “>”
and a blinking cursor. In many ways this is similar to the shell environment you learned about during
the shell lessons: it operates on the same idea of a “Read, evaluate, print loop”: you type in commands,
R tries to execute them, and then returns a result.

Using R as a calculator

The simplest thing you could do with R is do arithmetic:

1 + 100

[1] 101

And R will print out the answer, with a preceding “[1]”. Don’t worry about this for now, we’ll explain
that later. For now think of it as indicating output.
Like bash, if you type in an incomplete command, R will wait for you to complete it:

> 1 +

+

Any time you hit return and the R session shows a “+” instead of a “>”, it means it’s waiting for you
to complete the command. If you want to cancel a command you can simply hit “Esc” and RStudio
will give you back the “>” prompt.

Tip: Cancelling commands

If you’re using R from the commandline instead of from within RStudio, you need to use
Ctrl+C instead of Esc to cancel the command. This applies to Mac users as well!
Cancelling a command isn’t only useful for killing incomplete commands: you can also use
it to tell R to stop running code (for example if its taking much longer than you expect),
or to get rid of the code you’re currently writing.

2

When using R as a calculator, the order of operations is the same as you would have learned back in
school.

From highest to lowest precedence:

• Parentheses: (,)
• Exponents: ˆ or **
• Divide: /
• Multiply: *
• Add: +
• Subtract: -

3 + 5 * 2

[1] 13

Use parentheses to group operations in order to force the order of evaluation if it differs from the
default, or to make clear what you intend.

(3 + 5) * 2

[1] 16

This can get unwieldy when not needed, but clarifies your intentions. Remember that others may later
read your code.

(3 + (5 * (2 ˆ 2))) # hard to read
3 + 5 * 2 ˆ 2 # clear, if you remember the rules
3 + 5 * (2 ˆ 2) # if you forget some rules, this might help

The text after each line of code is called a “comment”. Anything that follows after the hash (or
octothorpe) symbol # is ignored by R when it executes code.

Really small or large numbers get a scientific notation:

2/10000

[1] 2e-04

Which is shorthand for “multiplied by 10ˆXX”. So 2e-4 is shorthand for 2 * 10ˆ(-4).

You can write numbers in scientific notation too:

5e3 # Note the lack of minus here

[1] 5000

3

Mathematical functions

R has many built in mathematical functions. To call a function, we simply type its name, followed
by open and closing parentheses. Anything we type inside the parentheses is called the function’s
arguments:

sin(1) # trigonometry functions

[1] 0.841471

log(1) # natural logarithm

[1] 0

log10(10) # base-10 logarithm

[1] 1

exp(0.5) # eˆ(1/2)

[1] 1.648721

Don’t worry about trying to remember every function in R. You can simply look them up on Google,
or if you can remember the start of the function’s name, use the tab completion in RStudio.

This is one advantage that RStudio has over R on its own, it has auto-completion abilities that allow
you to more easily look up functions, their arguments, and the values that they take.

Typing a ? before the name of a command will open the help page for that command. As well as
providing a detailed description of the command and how it works, scrolling to the bottom of the help
page will usually show a collection of code examples which illustrate command usage. We’ll go through
an example later.

Comparing things

We can also do comparison in R:

1 == 1 # equality (note two equals signs, read as "is equal to")

[1] TRUE

1 != 2 # inequality (read as "is not equal to")

[1] TRUE

1 < 2 # less than

[1] TRUE

1 <= 1 # less than or equal to

4

[1] TRUE

1 > 0 # greater than

[1] TRUE

1 >= -9 # greater than or equal to

[1] TRUE

Tip: Comparing Numbers

A word of warning about comparing numbers: you should never use == to compare two
numbers unless they are integers (a data type which can specifically represent only whole
numbers).

Computers may only represent decimal numbers with a certain degree of precision, so
two numbers which look the same when printed out by R, may actually have different
underlying representations and therefore be different by a small margin of error (called
Machine numeric tolerance).

Instead you should use the all.equal function.

Further reading: http://floating-point-gui.de/

Variables and assignment

We can store values in variables using the assignment operator <-, like this:

x <- 1/40

Notice that assignment does not print a value. Instead, we stored it for later in something called a
variable. x now contains the value 0.025:

x

[1] 0.025

More precisely, the stored value is a decimal approximation of this fraction called a floating point
number.

Look for the Environment tab in one of the panes of RStudio, and you will see that x and its value
have appeared. Our variable x can be used in place of a number in any calculation that expects a
number:

log(x)

[1] -3.688879

Notice also that variables can be reassigned:

x <- 100

5

http://floating-point-gui.de/
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point

x used to contain the value 0.025 and and now it has the value 100.
Assignment values can contain the variable being assigned to:

x <- x + 1 #notice how RStudio updates its description of x on the top right tab

The right hand side of the assignment can be any valid R expression. The right hand side is fully
evaluated before the assignment occurs.
Variable names can contain letters, numbers, underscores and periods. They cannot start with a
number nor contain spaces at all. Different people use different conventions for long variable names,
these include

• periods.between.words
• underscores between words
• camelCaseToSeparateWords

What you use is up to you, but be consistent.
It is also possible to use the = operator for assignment:

x = 1/40

But this is much less common among R users. The most important thing is to be consistent with
the operator you use. There are occasionally places where it is less confusing to use <- than =, and it
is the most common symbol used in the community. So the recommendation is to use <-.

Vectorization

One final thing to be aware of is that R is vectorized, meaning that variables and functions can have
vectors as values. For example

1:5

[1] 1 2 3 4 5

2ˆ(1:5)

[1] 2 4 8 16 32

x <- 1:5
2ˆx

[1] 2 4 8 16 32

This is incredibly powerful; we will discuss this further in an upcoming lesson.

Managing your environment

There are a few useful commands you can use to interact with the R session.
ls will list all of the variables and functions stored in the global environment (your working R session):

ls()

[1] "x" "y"

6

Tip: hidden objects

Like in the shell, ls will hide any variables or functions starting with a “.” by default. To
list all objects, type ls(all.names=TRUE) instead

Note here that we didn’t given any arguments to ls, but we still needed to give the parentheses to tell
R to call the function.
If we type ls by itself, R will print out the source code for that function!

ls

function (name, pos = -1L, envir = as.environment(pos), all.names = FALSE,
pattern, sorted = TRUE)

{
if (!missing(name)) {

pos <- tryCatch(name, error = function(e) e)
if (inherits(pos, "error")) {

name <- substitute(name)
if (!is.character(name))

name <- deparse(name)
warning(gettextf("%s converted to character string",

sQuote(name)), domain = NA)
pos <- name

}
}
all.names <- .Internal(ls(envir, all.names, sorted))
if (!missing(pattern)) {

if ((ll <- length(grep("[", pattern, fixed = TRUE))) &&
ll != length(grep("]", pattern, fixed = TRUE))) {
if (pattern == "[") {

pattern <- "\\["
warning("replaced regular expression pattern '[' by '\\\\['")

}
else if (length(grep("[ˆ\\\\]\\[<-", pattern))) {

pattern <- sub("\\[<-", "\\\\\\[<-", pattern)
warning("replaced '[<-' by '\\\\[<-' in regular expression pattern")

}
}
grep(pattern, all.names, value = TRUE)

}
else all.names

}
<bytecode: 0x7ff75d814348>
<environment: namespace:base>

You can use rm to delete objects you no longer need:

rm(x)

If you have lots of things in your environment and want to delete all of them, you can pass the results
of ls to the rm function:

rm(list = ls())

7

In this case we’ve combined the two. Like the order of operations, anything inside the innermost
parentheses is evaluated first, and so on.

In this case we’ve specified that the results of ls should be used for the list argument in rm. When
assigning values to arguments by name, you must use the = operator!!

If instead we use <-, there will be unintended side effects, or you may get an error message:

rm(list <- ls())

Error in rm(list <- ls()): ... must contain names or character strings

Tip: Warnings vs. Errors

Pay attention when R does something unexpected! Errors, like above, are thrown when
R cannot proceed with a calculation. Warnings on the other hand usually mean that the
function has run, but it probably hasn’t worked as expected.

In both cases, the message that R prints out usually give you clues how to fix a problem.

R Packages

It is possible to add functions to R by writing a package, or by obtaining a package written by someone
else. As of this writing, there are over 7,000 packages available on CRAN (the comprehensive R archive
network). R and RStudio have functionality for managing packages:

• You can see what packages are installed by typing installed.packages()
• You can install packages by typing install.packages("packagename"), where packagename is

the package name, in quotes.
• You can update installed packages by typing update.packages()
• You can remove a package with remove.packages("packagename")
• You can make a package available for use with library(packagename)

8

	Motivation
	Introduction to RStudio
	Work flow within RStudio
	Tip: Running segments of your code
	Introduction to R
	Using R as a calculator
	Tip: Cancelling commands
	Mathematical functions
	Comparing things
	Tip: Comparing Numbers
	Variables and assignment
	Vectorization
	Managing your environment
	Tip: hidden objects
	Tip: Warnings vs. Errors
	R Packages

